Dii Desert Energy

Lessons Learnt: Global Green Hydrogen Cost Optimization VOT-BFT Model™

> Fadi Maalouf Dubai 19th Nov 2023

Document History

DOCUMENT CHANGE HISTORY RECORD SHEET

	Document Title / Number	Rev.	Description Of	Change	Effective Date
VOT-BFT Model		1	Initial Release – For Information		28-Feb-2023
Lessons Learnt: VOT-BFT Model	GGHCOVOTBFT-Model-R1-fm230228 Global Green Hydrogen Cost Optimization ™ GGHCOVOTBFT-Model-R1-fm230228	2	Update for Webinar		5-Jun-2023
Lessons Learnt: Global Green Hydrogen Cost Optimization VOT-BFT Model™ Lessons-Learnt-GGHCOVOTBFT-Model-R3-fm231119		3	General Update		19-Nov-2023
Category	Name	Designatio	n	Signature	Date
Author	Fadi Maalouf	CTO - Direc	ctor IPP & EPC	F2M2	5-Jun-2023

Outline

- Introduction
- Toolkit Versions
- Toolkit Features
- How Does It Work?
- Toolkit Key Objectives
- Toolkit Content
- Toolkit Inputs Form
- Toolkit Pre-COD Finance Cost
- Toolkit Optimization Process & Results
- Takeaways
- Contact

Introduction

- In the Global Energy Transition context and decarbonization, all hands must be on deck!
- There is no magic quick fix or silver bullet solution. It is a collaborative effort across all stakeholders and industries.
- A double win can be achieved: accelerated energy transition driven by sustainable economic recovery.
- An important element of this double win is Green Hydrogen i.e., hydrogen produced from electrolyzers powered by renewable energy resources.
- Hydrogen is a versatile energy carrier with a wide range of uses and unique attributes, especially for energy sectors that are hard to electrify with renewable resources but can be made greener through sector coupling.
- So, if Green Hydrogen is technically a key enabler of decarbonization, then the next step or barrier to break is economics.
- This translates to: how much does Green Hydrogen costs to produce and how to calculate that as well as analyze pathways of cost reduction?
- A financial model toolkit for analyzing levelized cost of Green Hydrogen & derivatives becomes necessary.

Levelized Cost of Green Hydrogen LCOH & Ammonia LCOA & e-Methanol LCOM & e-Kerosene LCOK

Six Versions:

- LCOH Financial Model Toolkit V5A Green H₂ Production
- LCOH Financial Model Toolkit V5.2 Global Green H₂ Cost Optimization VOT-BFT ModelTM

- LCOH Financial Model Toolkit V6A ٠ Green H₂ Production & Delivery Infra Pathways
- LCOA Financial Model Toolkit V7A Green NH₃ Production & Storage
- LCOM Financial Model Toolkit V8A Green e-Methanol Production & Storage
- LCOK Financial Model Toolkit V9A Green e-Kerosene Production & Storage

Six versions Modular approach to:

- Verify costs at each stage of the process Piecemeal manageable iterative approach Identify cost optimization priorities & opportunities

Levelized Cost of Green Hydrogen LCOH & Ammonia LCOA & e-Methanol LCOM & e-Kerosene LCOK

General Features:

- Get exclusive market analysis & benchmarking data for Levelized Cost of Green Hydrogen / Green Ammonia / Green e-Methanol
 Green e-Kerosene
- Obtain the best of all worlds assembled from over 50 best in class models for LCOH/LCOA/LCOM/LCOK in the market.
- A quick yet very effective holistic approach methodology to determine levelized costs of green molecules.
- Capture all life cycle costs and assess project feasibility.
- A detailed analytical dive into optimizing costs as well as performance parameters.
- Utilize powerful and comprehensive sensitivity analysis scenarios.
- User-friendly design with guideline, rich visuals & charts, printable 17-page report.
- Toolkits are available on a Software as a Service (SaaS) basis.
- Native model toolkits files (xls) are available as commercial product.
- Download sample pdf reports at: download link provided upon request

Levelized Cost of Green Hydrogen LCOH & Ammonia LCOA & e-Methanol LCOM & e-Kerosene LCOK

Financial Model Toolkit General Features: Zoom In!

- Very Well-Structured Content & Workflow
- Project Information Data Capturing Full Scope of Work & Limits
- Detailed Input Parameters Form with Guideline Notes
- Analysis of Pre-COD Finance Cost & Construction Delay Cost
- Tabular LCOH/LCOA/LCOM/LCOK Outputs
- Breakdown CAPEX & OPEX & LCOH/LCOA/LCOM/LCOK Output Charts
- Up to 16 Parameters Sensitivity Tornado Chart
- Up to 8 Two-Dimensional Sensitivity Charts
- Multi-Lifecycle Analysis Chart
- Export Data/Charts Feature
- GIS Interface Feature

Toolkits Versions Levelized Cost of Green Hydrogen LCOH & Ammonia LCOA & e-Methanol LCOM & e-Kerosene LCOK

Green Hydrogen Toolkit Version 5B

Levelized Cost of Green Hydrogen LCOH & Ammonia LCOA & e-Methanol LCOM & e-Kerosene LCOK

Green Ammonia Toolkit Version 7A

Toolkits Versions Levelized Cost of Green Hydrogen LCOH & Ammonia LCOA & e-Methanol LCOM & e-Kerosene LCOK

Green Methanol Toolkit Version 8A

Levelized Cost of Green Hydrogen LCOH & Ammonia LCOA & e-Methanol LCOM & e-Kerosene LCOK

Green Kerosene SAF Toolkit Version 9A

How Does It Work? V5 / V6 / V7 / V8 / V9

- The financial model toolkit is a discounted cashflow model coupled with visual representation in charts and graphs, and analytical features of one- and two-dimensional sensitivity analysis.
- Basically, the toolkit is a calculation engine that feeds on user supplied input parameters and provides calculated outputs of LCOH in \$/Kg H₂ plus plenty of charts for easier analytical what-If-scenarios representation. The same methodologies is applied for Green Ammonia and Green e-Methanol Toolkits.
- To run the model and provide a report, the user (desktop researcher) provides Dii with the required "input parameters".
- This is a two-page Inputs Form that covers the attributes of Green Hydrogen/Ammonia/e-Methanol/e-Kerosene. Dii runs the respective model and provides a report. Service Done!

How Does It Work? Financial Model Toolkit – Good Practice Principles & Workflow

How Does It Work? Financial Model Toolkit – Capital Budgeting Process Workflow

Toolkit Key Objectives Global Green Hydrogen Cost Optimization VOT-BFT Model™ V5.2

- All-in-one model packed with unique advanced flexible features
- Optimum LCOH anywhere globally, based on site coordinates
- 3 Connection Schemes options
 - Standalone PV+Wind w/ hourly temporal correlation
 - Grid connected PV+Wind w/ hourly temporal correlation
 - Grid connected PPA w/o hourly temporal correlation
- 2 Options for PV+Wind hourly generation data profile
 - Model generated PV+Wind hourly profiles via API
 - User imported custom PV+Wind hourly profile
- Model is Excel based, no additional specialty software
- Macro based functions, eliminate manual tasks
- Model run on laptop, no high performance computing servers

Toolkit Key Objectives Global Green Hydrogen Cost Optimization VOT-BFT Model™ V5.2

- Per Unit (PU) optimization methodology design
- Optimization process workflow is similar to Genetic Algorithm
- Optimum PV+Wind capacity sizing for optimum LCOH case
- Set electrolyzer operating window & track operating & FLEH hours
- 3 User defined alternative constrained optimum cases
- 8 User defined custom cases for comparison & analysis
- Detailed CAPEX/OPEX/System parameters settings
- Extensive Charts & Visuals for Analysis
- Available on SaaS basis for a nominal fee per project report

Annual Capacity Factor & Energy Balance

Toolkit Content Global Green Hydrogen Cost Optimization VOT-BFT Model™ V5.2

- The model toolkit is an XLS file with 26 sheets.
- The integrity of the toolkit structure and calculation engine is secured and protected against unintended formulae edits.
- A content sheet provides quick navigation hyperlinks to all sheets.
- By providing a list of input parameters, a model run will generate a 17-page pdf report.

Global Green Hydrogen Cost Optimization VOT-BFT Model ™

CONTENT

S.N.	Description	Link
1	Cover Page	Cover
2	Project Dashboard	Dashboard
3	Content	Content
4	Disclaimer	<u>Disclaimer</u>
5	Site Location Interactive Map	Site-Map
6	Project Info Summary	Project-Info-Summary
7	Inputs Form Guide	Inputs-Form-Guide
8	Pre-COD Finance Cost	Pre-COD-Finance-Cost
9	Summary Inputs & Outputs	Summary-Inputs-Outputs
10	Cashflow	Cashflow
11	PV Hourly Generation Dataset API	<u>PV_Hourly</u>
12	Wind Hourly Generation Dataset API	Wind Hourly
13	PV LCOE Calculations	PV-LCOE
14	Wind LCOE Calculations	Wind-LCOE
15	PV+Wind+BESS LCOE Dynamic Calculations	PV+Wind-LCOE
16	PV+Wind+BESS Hourly Energy Balance & Sizing Calculations	PV+Wind Hr AnnualCalc
17	PV+Wind+BESS Annual Energy Balance & Sizing Calculations	AnnualCalc
18	Optimization Data Processing & Analysis	Data-Analysis-AnnualCalc
19	Optimization Data Processing & Analysis - Previous Run Dataset Backup	Data-Analysis-AnnualCalc-PR
20	Optimization Data Processing & Analysis - Previous Run 2 Dataset Backup	Data-Analysis-AnnualCalc-PR2
21	Optimization Results & Charts	Optimization-Results-AnnualCalc
22	Optimization Calculations	Optimization-AnnualCalc
23	LCOH Sensitivity 1D & 2D	Sensitivity-1D-2D
24	Export LCOH 2D Hi Res Table for GIS Interface	Export-2D-HiRes
25	Export Model Charts	Export-Charts
26	Contact	Contact

Toolkit Inputs Form Global Green Hydrogen Cost Optimization VOT-BFT Model™ V5.2

- The Inputs Form (xls file) data set is in six categories:
- General (Lifecycle Selection up to 40 years, economies of scale, technology & costs ref. years, Site Coordinates, Plant Connection Scheme Selection, PV+Wind Hourly Generation Profile Data Source Selection)
- 2. Finance Structure (gearing, equity & debt rates, construction period finance)
- 3. CAPEX (breakdown required)
- 4. OPEX (fixed & variable, energy & water, land lease, escalation rates, stack replacement intervals)
- 5. System (capacity, efficiency, degradation, capacity factor, system background settings, optimization cases selection)
- 6. Decommissioning & Residual Value
- For each input parameter, notes and remarks are provided. The user can also add his/her special notes as well.

Inputs Form

Toolkit Pre-COD Finance Cost

- Pre-COD Finance Analysis:
 - 1. CAPEX drawdown profile
 - 2. Construction period finance cost breakdown

Pre-COD Finance Cost Breakdown as % of CAPEX

Toolkit Pre-COD Finance Cost

- Pre-COD Finance Analysis:
 - 1. Construction delay cost analysis
 - 2. Construction period sensitivity analysis

Optimization Summary

V5.2

Optimum Case Sizing

One Click Process !

Step ' ** ***** ** ***** ** ***** PV+Wind Standalone v 2**Z**7 Step 2 (-)ELZRcap (PU) Result 1.3 0.6 1.9 Optimum PV+Wind LCOE (\$¢/kWh) 2.482922704 7.42% 58.59% 8041 Optimum LCOH (\$/Kg) 2.077212319 26 Global Green Hydrogen Cost Optimization VOT-BFT Model ™ LCOH Optimization Summary Optimum PVcap (PU) Optimum LCOH (\$/Ka)

Lon

Optimization Process Summary - User Defined Alternative Optimum Cases Solver

Option 1

		Step 2
	zZZ	Store 2
Standalone	w/ PV+Wind	
** *****	**.*****	-
** *****	**.*****	•
** *****	**.*****	otep i
Lat°	Lon°	Step 1
	** ****** ** ****** ** *****	** ****** ** ****** ** ****** ** ****** ** ******

Outputs

V5.2

Outputs		Alternative Optimum Case Results		Alternative Optimum Case Results		With Applied Filter - PVcap Value	1.20	
Ontimum Caso Posulte		With Applied Filter - Minimum Required ELZR CF 72%		With Applied Filter - Total Gencap Limit 1.60				
ELZRcap (PU)	1	ELZRcap (PU)	1	ELZRcap (PU)	1	ELZRcap (PU)	1	
Optimum PVcap (PU)	1.3	PVcap (PU)	1.1	PVcap (PU)	1.2	PVcap (PU)	1.2	
Optimum Windcap (PU)	0.6	Windcap (PU)	1.1	Windcap (PU)	0.4	Windcap (PU)	1.3	
Optimum Total Gencap (PU)	1.9	Total Gencap (PU)	2.2	Total Gencap (PU)	1.6	Total Gencap (PU)	2.5	
Optimum PV+Wind LCOE (\$¢/kWh)	2.482922704	PV+Wind LCOE (\$¢/kWh)	2.746001	PV+Wind LCOE (\$¢/kWh)	2.316968	PV+Wind LCOE (\$¢/kWh)	2.918049	
Optimum Net Excess Generation %	7.42%	Net Excess Generation %	8.76%	Net Excess Generation %	3.62%	Net Excess Generation %	14.02%	
Optimum ELZR CF (%)	58.59%	ELZR CF (%)	72.15%	ELZR CF (%)	49.91%	ELZR CF (%)	77.88%	
Optimum ELZR Operating Hours (hr/yr)	8041	ELZR Operating Hours (hr/yr)	8428	ELZR Operating Hours (hr/yr)	7677	ELZR Operating Hours (hr/yr)	8499	
Optimum LCOH (\$/Kg)	2.077212319	LCOH (\$/Kg)	2.098708	LCOH (\$/Kg)	2.106898	LCOH (\$/Kg)	2.15103	
Optimum Case No.	26	Case No.	79	Case No.	3	Case No.	102	

Option 2

Apply selected case as baseline case via macro

Restore Startup 1/1/1 to Sizing	Apply Optimum Case to Sizing
Apply Option 1 Case to Sizing	
Apply Option 2 Case to Sizing	
Apply Option 3 Case to Sizing	

Alternative Custom Case Results

Option 3

Optimization Process Summary - User Applied Case Annual Capacity Factor & H₂ Production PV & Wind & Electrolyzer Degradation Impact Current Status: Plant Electricity Connection TypeStandalone w/ PV+WindCurrent Status: PVcap (PU)1.10Current Status: Windcap (PU)1.10

V5.2

Optimization Process Summary - User Applied Case Annual Capacity Factor Energy Balance PV & Wind & Electrolyzer Degradation Impact

Current Status: Plant Electricity Connection Type	Standalone w/ PV+Wind
Current Status: PVcap (PU)	1.10
Current Status: Windcap (PU)	1.10

V5.2

Deep Dive – Advanced Optimization Process Summary Up to 8 User Defined Custom Cases Analysis

Run Custom Case Results						
Plant Electricity Connection Type	Standalone w/ PV+Wind	Grid w/ PV+Wind	Standalone w/ PV+Wind	Grid w/ PV+Wind	Standalone w/ PV+Wind	Standalone w/ PV+Wind
ELZRcap (PU)	1	1	1	1	1	1
PVcap (PU)	1.20	1.20	1.30	1.30	1.50	0.00
Windcap (PU)	1.00	1.00	0.60	0.60	0.00	1.30
Total Gencap (PU)	2.20	2.20	1.90	1.90	1.50	1.30
PV+Wind LCOE (\$¢/kWh)	2.710930	2.485506	2.482923	2.328625	1.961987	3.071111
Net Excess Generation %	9.42%	9.42%	7.42%	7.42%	5.40%	4.39%
ELZR CF (%)	70.33%	70.33%	58.59%	58.59%	40.85%	53.58%
ELZR Operating Hours (hr/yr)	8,380	8,380	8,041	8,041	4,257	7,950
LCOH (\$/Kg)	2.092682	1.967170	2.077212	1.991302	2.075847	2.466210
Case No.	Custom 1	Custom 2	Custom 3	Custom 4	Custom 5	Custom 6
Calc Dur	28.00 sec	30.00 sec	35.00 sec	33.00 sec	33.00 sec	31.00 sec
Note 1					PV Only	Wind Only
Note 2						
Note 3						
Note 4						3
Note 5				•		
Note 6				2		

Dun Custom Coso Doculto

Optimization Process Final Step

V5.2

- Apply a user selected case as baseline case (dropdown list)
- Print the complete 17-page report with all data and cases

Restore Startup 1/1/1 to Sizing	Run Custom Case 1 for PVcap & Windcap
Apply Optimum Case to Sizing	Run Custom Case 2 for PVcap & Windcap
Apply Option 1 Case to Sizing	Run Custom Case 3 for PVcap & Windcap
Apply Option 2 Case to Sizing	Run Custom Case 4 for PVcap & Windcap
Apply Option 3 Case to Sizing	

Task automation via macros

PV+Wind Sizing Summary	
Plant Electricity Connection Type (Grid Connected or Standalone)	Standalone w/ PV+Wind
PV+Wind+BESS Optimization Case Selection (Optimum, Options 1/2/3, Custom 1/2/3/4)	Option 1
PV Plant Capacity (kW)	1,100,000
Wind Plant Capacity (kW)	1,100,000
Total Generation Capacity (kW)	2,200,000
BESS Power Capacity (kW)	NA
BESS Energy Capacity (kWh)	NA
PV LCOE \$/kWh	0.01888427
PV Plant Annual Capacity Factor (%)	28.78%
Wind LCOE \$/kWh	0.02959250
Wind Plant Annual Capacity Factor (%)	43.11%
PV+Wind LCOE \$/kWh	0.02746001
Plant Annual Capacity Factor (%)	72.15%
Plant Annual Operating Hours (hr/yr)	8,428

Optimization Process Results - CAPEX & OPEX Breakdown

V5.2

V5.2

Optimization Process Results LCOH Breakdown

Optimization Process Results 1-Page Project Dashboard

V5.2

Toolkit Sample Report: Global Green Hydrogen Cost Optimization VOT-BFT Model™ V5.2

Global Green Hydrogen Cost Optimization VOT-BFT Model™

Download Sample Project Report

Download This Presentation: Global Green Hydrogen Cost Optimization VOT-BFT Model™ V5.2

Lessons Learnt: Global Green Hydrogen Cost Optimization VOT-BFT Model™

Download This Presentation

- The green molecules era has arrived.
- Their contribution to the energy transition will rise and accelerate.
- Balancing technical solutions with sound economics will be critical to the success.
- Challenges ahead that are vital for bankable projects development:
 - Clear long-term guarantees of origin / standards / policy / regulatory environments
 - Risk-balanced long-term offtake agreements
 - Overall plant performance guarantees
- Again, all hands must be on deck!

Thank You For Your Attention!

Contact:

Fadi Maalouf CTO - Director IPP & EPC +971 50 624 6126 fadi@dii-desertenergy.org www.dii-desertenergy.org @SolarUAE

in linkedin.com/in/FadiMaalouf

